Can You BEAT Your LIMIT?

Minggu, 25 Oktober 2015

Luas Daerah dan Volume Benda Putar UN Matematika SMA

Contoh soal pembahasan luas daerah dan volume benda putar, ujian nasional UN matematika SMA terkait skl / kisi-kisi dengan indikator : Menghitung luas daerah dan volume benda putar dengan menggunakan integral.

Berikut contoh soal-soal UN materi Luas Daerah dan Volum Benda Putar:

1) UN Matematika SMA 2010 P04 - Kepulauan Riau
Luas daerah yang dibatasi oleh parabola y = 4x − x2, y = −2x + 8, dan sumbu Y adalah....
A. 4 2/3 satuan luas
B. 6 2/3 satuan luas
C. 12 2/3 satuan luas
D. 20 2/3 satuan luas
E. 30 2/3 satuan luas

2) UN 2010 Yogyakarta
Luas daerah di kuadran I yang dibatasi oleh oleh kurva y = x3, y = x, x = 0 dan garis x = 2 adalah....
A. 2 1/4 satuan luas
B. 2 1/2 satuan luas
C. 3 1/4 satuan luas
D. 3 1/2 satuan luas
E. 4 1/4 satuan luas

3) UN Matematika SMA IPA P04 2010 Kepulauan Riau
Daerah yang dibatasi oleh kurva y = 4 − x2, sumbu X, sumbu Y dan garis x = 1. Volume benda putar yang terjadi jika daerah tersebut diputar mengelilingi sumbu X adalah...
A. 12 8/15 π satuan volum
B. 12 8/12 π satuan volum
C. 13 8/15 π satuan volum
D. 13 8/12 π satuan volum
E. 14 π satuan volum

4) UN Matematika SMA 2010-Yogyakarta
Volume benda putar yang terjadi bila daerah yang dibatasi oleh kurva y = x2 dan daerah y = √x diputar 360° mengelilingi sumbu X adalah....
A. 3/10 π satuan volum
B. 5/10 π satuan volum
C. 1/3 π satuan volum
D. 10/3 π satuan volum
E. 2π satuan volum

5) UN Matematika SMA 2010 P37 Kepulauan Riau
Volume benda putar yang terjadi jika daerah yang dibatasi oleh kurva y = 2x − x2 dan y = 2 − x diputar mengelilingi sumbu X sejauh 360° adalah....
A. 1/5 π satuan volum
B. 2/5 π satuan volum
C. 3/5 π satuan volum
D. 4/5 π satuan volum
E. π satuan volum

6) UN 2011 Paket 12 Yogyakarta
Volume benda putar jika daerah yang dibatasi oleh kurva y = x2, garis y = 2x di kuadran I diputar 360° terhadap sumbu X adalah....
A. 20/15 π satuan volum
B. 30/15 π satuan volum
C. 54/15 π satuan volum
D. 64/15 π satuan volum
E. 144/15 π satuan volum

Pembahasan Soal Nomor 2
Sketsa grafik yang dibentuk oleh kedua fungsi, cari titik potong y = x3 dan y = x

Titik potong :
x3 = x
x3 − x = 0
x(x2 − 1) = 0
x(x − 1)(x + 1) = 0
x = 0 v x = 1 v x = − 1


Karena dibatasi juga oleh garis x = 0, maka titik potong yang digunakan adalah 0 dan 1 saja. Berikut sketsa kasar grafiknya:



Dari sketsa grafik terlihat dua area yang harus dicari luasnya, area pertama dibatasi oleh 0 dan 1, area kedua dibatasi oleh 1 dan 2 selengkapnya perhitungan mencari luasnya sebagai berikut:



Kita hitung secara terpisah saja untuk mengurangi resiko kesalahan perhitungan akibat kurangnya ketelitian
Luas area pertama



Luas area kedua



Jumlahkan
2 1/4 + 1/4 = 2 1/2 satuan luas

Pembahasan Soal No. 5
Sketsa grafiknya. cari titik-titik potong:
2x − x2 = 2 − x
2x − x2 + x − 2 = 0
x2 − 3x + 2 = 0
(x − 2)(x−1) = 0
x = 2 v x = 1

Berikut sketsa kasar grafik selengkapnya



Waktunya berhitung:



Eksekusi akhir


 
 
 
 
 
 
KEEP CALM AND ALWAYS FIGHT
 
 
 
 
 

0 komentar:

Posting Komentar